
Detecting Rumors with RNN
1st Fan Yu517030910339

Shanghai Jiaotong University
f y-sky@sjtu.edu.cn

2nd Ling Qiuxuan
Shanghai Jiaotong University

2017lqx@sjtu.edu.cn

Abstract—Nowadays social platforms are booming, with enor-
mous suspicious information spreading on them, and debunking
rumors on social platform is a vital problem. To distinguish
rumors, traditional machine learning methods are mainly de-
pended on hand-crafted features which need a great deal of
manual effort. When faced with a questionable claim, people
will discuss its reliability and posting different information over
time, which generates a long-distance based dependencies of
evidence. Our work comes out a novel method which can learn
continuous representations of microblog events to distinguishing
whether such event is a rumor or not. Our model is based
on the Recurrent Neural Network(RNN) which can capture the
diversity of different textual information of relevant posts in the
long time view. We also combines the promising self-attention
method and pretrained word embedding with our model. Also,
considering the fact that nowadays labeled data becomes more
and more expansive to get while unlabeled data is easier to
collect, we also propose a semi-supervised model to deal with such
problem. Core idea of our semi-supervised model is self-training
method. Experiments on real-world Weibo dataset demonstrates
that (1) our supervised model outperforms all traditional machine
learning method, and a simple two layers RNN network.(2)
The supervised model has closely performance with the state-
of-art BERT model, but training consumption is much less
than BERT(Our model is trained on a 8G 1050Ti 15 minutes,
while BERT is trained on a 11G 1080Ti 20minutes.(3) Our semi
supervised model also beat the traditional method and 2-layer
RNN, which shows a promising prospect on such method.

Index Terms—RNN, Rumors Detection, Attention, Semi-
supervised

I. INTRODUCTION,LING QIUXUAN

A rumor definition is ”a tall tale of explanations of events
circulating from person to person and pertaining to an object,
event, or issue in public concern.” [?] Rumors are always
harmful as they may cause public panic and social turmoil.
For example, after 2011 East Japan earthquake, a rumor
comes out that the iodised salt can prevent radiation, and
there will be radiation flowing from Fukushima Nuclear
Power Station to China. Such rumor cause a nationwide panic
in China and people rushed to purchase iodised salt blindly,
and there is even someone dead because of intake too much
salt in a short time. This incident of a false rumor highlights
the importance of automatically distinguishing rumor in the
social platform and stopping its spread.

Distinguishing rumors at an early stage of spread is
quite vital to minimizing their damage. To identify rumors,
individuals and organizations usually involves many hand-
crafted features, such as textual content, users characteristics,

diffusion pattern of these posts and so on, and apply these
features on traditional machine learning models, like SVM
and random forest. These methods always face with two
shortage:(1) first their performance is highly depended on
feature engineering, which needs a great deal of human effort.
(2) second, their model often have a low ability of generation,
which means one special-designed and elaborate model may
have a bad performance in other tasks.

On the other hand, deep recurrent neural networks have
show its power in many natural language processing tasks,
compared with other machine learning model. In this paper,
we exploit the Bidirectional LSTM network to fully discover
the hidden representation of textual content, which avoids
the labor-intensive feature engineering process. By utilizing
RNN, we model the textual information of an event on the
social platforms as a variable-length time series. We assume
people will make comments on a dubious event and offer
additional information about such event. RNN will utilize the
long term dependency of original text and people comments.

Considering the limits of the number of RNN units, we
implement a Variable Time Series Algorithm to split the
posts of an event into certain number of posters clusters. To
capture the difference in diffusion pattern between rumors and
facts, we add extra time features so the model learn both
the temporal and textual representations from rumor posts.
We also combines some promising technique, such as self-
attention and pretrained word embedding, to improve our
model performance. In view of the lack of labeled data and
abundant unlabeled data, we also proposes a semi-supervised
model based on self-training method. Extensive experiments
on the rumor dataset of Weibo shows our supervised model
closely performance to the state of art model BERT while
computational consumption is much less than BERT, and our
semi-supervised model also outperform than simple two layer
RNN network.

II. VISUALIZE, LING QIUXUAN

The format of the data we collected is as follows. We
collected the ID, parent ID, comments count, reposts count,
time and facticity of each data. Then, we use the sum of the
comments count and reposts count to represent the influence
of the message. Also, we use the time difference of this post
and the parent to represent the intimacy.



Fig. 1. Data

We take two data sets, one big and one small, and visualize
them. From these figures, we can observe some characteristics
of the data set.

Fig. 2. visualize1

In the figures, the size of the dot indicates its influence (the
bigger the dot, the greater the influence), the thickness of the
line indicates the intimacy (the thicker the line, the shorter the
time), and color indicates its facticity (red means the news is
a rumor).

Fig. 3. visualize2

III. MODEL STRUCTURE, FAN YU AND LING QIUXUAN

We explain the details of our RNN-based model for clas-
sifying microblog events as rumors or non-rumors. First we
offer the definition of classifying rumor problem.

A. Problem Statement

A singal microblog post contains limited information,
making it hard to classify whether it is a rumor or non-rumor.
While regarding posts with the same topic as a continuous
event, we can make classification on the event level, rather
than the individual level. SO predicting the veracity of each
post is not our interest, and we concentrate on detecing
whether the event, comprised by a set of revelant posts, is
rumor or not.

We define a set of given events as E = Ei, where each event
Ei = (mi,j , ti,j) consists of relevant posts mi,j at timestamp
ti,j , and our task it to classify each event is a rumor or not.

B. Basic Model

To build a recurrent neural network to do classification,
a very natural idea is to model each input post as an input
instance, and construct a RNN with the same number as
the the number of posts. However, one event may have
thousands of posts, which means we need to build a RNN
with thousands of units. And back propagation through
such a large number of units will need high computational
consumption and be likely to cause gradient explosion or
gradient vanishing problem. Another idea to avoid too many
RNN units is that we can split the lasting time of an event
into serval equal time interval, and gather all posts in one
interval together and treat it as an input instance. But such
a division method may cause another problem: we all know
that when an event breaks out, there will be a large number
of evetns at the beginning, i.e. the first several time interval
will contain plenty of posts, while the middle time interval
will contain none or few posts. So such division method may
cause a post unbalanced problem.

Based on such observation, we propose a Variable-length
Time Series Algorithm to divide the posts, such algorithm
can both solve the unbalanced posts problem and the problem
of RNN units. THe input of such algorithm is all posts
in one events Ei, and the expected number N of RNN
units. We first initialize the length of one time interval as
l =

ti,ni
−ti,1
N . Line 4 we use divide the event lasting time

into equal time intervals, line 5,6 and remove the intervals
without posts. Line 7 we find the longest continuous time
span interval. Line 8 if such interval is shorter than N and
current interval is longer than the last interval, it means we
can continue spliting the event with shorter time interval,
so line 9 we shorten the length of time interval by 50%.
Otherwise we just return the result we split. No matter how
long an event lasts, the number of our final output time
interval is about N, and each time interval has the same length.



After the segmentation of event posts, we can build a basic
RNN model using the output of Variable-length Time Series
algorithm as input. Note we can replace the RNN unit with
LSTM unit or GRU unit.

Fig. 4. Basic Model

C. Diffusion Pattern

As an old saying goes ”Truth goes on crutches, while rumor
has wings”. There exists some difference between diffusion
pattern of rumor and truth Can we capture the feature of
diffusion pattern and combine it with textual feature to help
improve the performance of our classifier? Take the result of
our visualization as an example, if an event is transmitted
many times in a short period, the cluster will be small and
dense, the event is diffused quickly and gain lots attention,

Fig. 5. Different Event Diffusion

if an event is transmitted slowly in a long period, the cluster
will be large and sparse, the event is diffused slowly and
gains less attention. So we add an additional time feature
as the description of the diffusion pattern and concate it
with the textual feature. We calculate the mean and standard
deviation of all posts’ time in a single interval, and utilize the
idea of batch normalization to normalize all posts’ time in a
single interval, after normalization, the distribution of posts’
time can be a reflection of the posts cluster’s density, i.e. the
diffusion pattern.

µi =
1

m

m∑
j=1

ti,j (1)

σ2
i =

1

m

m∑
j=1

(ti,j − µi)
2 (2)

ˆti,j =
ti,j − µi√
σ2
i + ε

(3)

D. Word Embedding and Self Attention

As our corpus is small, we think it may be not enough to
train a fruitful word embedding. So we consider the idea of
transfer learing and use a well pretrained word embedding
to replace our own embedding and finetune on other layers.
The word embedding we use is trained on the 4.3G Baidu
Encyclopedia with 745M tokens and 5422K vocabulary, it’s a
word2vec word embedding with Character and Ngram.

Fig. 6. Word Embedding

Nowadays attention mechanism is widely used in natural
language processing, it can alleviate the problem that the
model can’t build long distance dependency by using different



weights in processing different RNN units. In this paper, we
don’t use the traditional attention mechanism, but we use the
promising self attention mechanism which has a better ability
of capturing internal information. Self attention is first pro-
posed by Google 2017 in the paper Allyouneedisattention.
Unlike traditional attention mechanism, the query Q, key K,
value V in self attention is from the same input. To calculate
self attention, we dot input X with parameter WQ,WK ,WV

and get the output Q, K, V, then calculate the scale dot of Q
and K, and pass the dot result through a softmax operation,
and finally dot V to get the output attention distribution.

Q =WQQ (4)
K =WKK (5)
V =WV V (6)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

Fig. 7. Self Attention

E. Supervised Model

After adding diffusion feature, pretrained word embedding
and self attention mechanism, we can build a semi supervised
model, which consists of a embedding layer, transferring
input instance and their time feature into textual feature and
diffusion pattern feature, a bi-direction LSTM layer, a self-
attention layer, calculating attention distribution for different
position, then a bi-direction LSTM layer, a dropout layer
to avoid over fitting and finally a softmax layer to ouput
prediction results.

F. Semi Supervised Learning

Nowadays, labeled data becomes more and more hard to
get, as manual hunman labeling process is more and more
expensive. While at the same time, we have easier access to
get enormous unlabeled data from society. Faced with such
a dilemma, we propose a semi-supervised learning model

Fig. 8. Model Structure

to make fully utilization of unlabeled data and expand our
model’s capability. The core idea of our semi-supervised
learning model is ”self training”. First line 4,we use labeled
data to train a classifier.Then line 5 we use this classifier
to make prediction of unlabeled data, line 6 we pick the
results with high confidence and label these results with the
predicted labels, and line 7 remove them, finally line 8 we
combine these data with orginal data.

IV. EXPERIMENTS, FAN YU

A. Dataset
Our dataset is from the the Sina community management

center, which reports misinformation. Our dataset contains 3.8
million posts and 4664 events, with 2313 rumors and 2351
non-rumors. And we randomly split the dataset by 7:3, i.e. we
have 3264 train examples and 1400 test examples. The details
of the dataset is followed:

B. Baseline Design
To make fully comparision, we implement several tradional

machine learning method, including logistics regression, ran-
dom forest, GBDT and KNN, a basic 2 layer RNN, and



Fig. 9. Dataset Information

the state-of-art model in many natural language processing,
BERT(Bidirectional Encoder Representations from Transform-
ers). The general framwork of BERT and transformer is
showed in
Our framework is Keras 2.24 and Tensorflow 1.13.1. The

Fig. 10. BERT Structure

results are followed:
From the results, we can find that our supervised model has

close performance to the state of art model BERT, and consid-
ering the computational consumption between BERT(trained
on 1080ti for 4 hours) and our model(1050ti for 3 hours), our
model is much cheaper and easier to train. Also, our semi-
supervised model still outperforms the traditional RNN, which
means we have boarden our model’s generalization ability
while not hurt its performance. Also, both supervised model
and semi-supervised model have much better performance than
traditional machine learning method.

V. CONCLUSION AND FUTURE WORK, FAN YU

Our contribution in this project can be summarized as
follows:

Fig. 11. Transformer Structure

Fig. 12. Experiment Result

1) We implement the Variable Time Series Algorithm to
divide the posts of single event into certain number
same-length time slots.

2) We consider the different diffusion pattern of rumor and
non-rumor events and add additional time features with
the text features to help caputure such features.

3) We utilize self-attention mechanism and pretrained word
embedding to help improve our model performance.

4) We propose a semi-supervised model, based on the self-
training algorithm, to alleviate the problem of the lack
of labeled data. And both the supervised model and
unsupervised model have good performance.

As for the future, we think our model can be improved in
the following two directions:

1) It’s not very accurate to use normalized time features
to learn the representations of diffusion pattern. And
nowadyas has already witnessed a boost in graph convo-
lutional neural network(GCNN), which shows a strong
ability to capture information in graph. And combining



GCNN method with our model may achieve better
performance in rumor diffusion patter capture.

2) Except self training, there are many other semi-
supervised learning method, such as co-training, tri-
training and so on. And we can try these semi supervised
learning method to further explore our semi-supervised
model.

Workload: Fanyu: model design, baseline design, 60%
Ling Qiuxuan: visualization, Basic RNN design, baseline
design, 40%

REFERENCES

[1] Jing Ma et al. “Detecting rumors from microblogs with recurrent neural
networks.” In: Ijcai. 2016, pp. 3818– 3824

[2] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems. 2017, pp. 5998–6008.

[3] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transform-
ers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[4] C Lin et al. ”Self-training improves recurrent neural networks perfor-
mance for temporal relation extraction” In: Association for Computa-
tional Linguistics pages 165–176


